Pinecone bakgrundsoskärpa
Pinecone logotyp
Pinecone
4.6
(22)
av Pinecone Systems Inc.
Varför Findstack är gratis?
Findstack är gratis för användare eftersom leverantörer betalar oss när de får webbtrafik och försäljningsmöjligheter. Findstack kataloger listar alla leverantörer – inte bara de som betalar oss så att du kan fatta ett så välinformerat köpbeslut som möjligt.
Unclaimed: Arbetar du på Pinecone?

Pinecone recensioner & produktdetaljer

Pinecone Översikt
Vad är Pinecone?

Pinecone är en hanterad vektordatabas utformad speciellt för att hantera vektorinbäddningar i maskininlärningsapplikationer, vilket möjliggör effektiv likhetssökning i stor skala. Det tillhandahåller ett enkelt API för att lagra och fråga vektorer, vilket gör det enklare att bygga och distribuera AI-drivna applikationer som kräver snabb och exakt vektorlikhetsmatchning, såsom rekommendationssystem, bildhämtning och bearbetningsuppgifter för naturligt språk.

Företag Pinecone Systems Inc.
År grundades 2020
Företagsstorlek 11-50 anställda
Huvudkontoret San Francisco, Kalifornien, USA
Sociala medier
Pinecone Kategorier på Findstack
Pinecone Produktinformation
Capabilities
AI
API
CLI
Segmentet
Litet företag
Mid Market
Frilansare
Företag
konfiguration Moln / SaaS / Web-baserat
Support Chatt, e-post/hjälp, vanliga frågor/forum, kunskapsbas
Utbildning Dokumentation, videor, webbseminarier
Språk Engelska
Villkor
Vår forskning är sammanställd från olika auktoritativa källor och avsedd att ge allmänna råd. Vi garanterar inte att våra förslag kommer att fungera bäst för varje användningsfall, så överväg dina unika behov när du väljer produkter och tjänster. Dela gärna din återkoppling.
Senast uppdaterad: April 12, 2024
Pinecone logotyp
22 Pinecone Omdömen
4.6 ut ur 5
Small Business (50 eller färre anställda)
December 04, 2023
 Källa
Helhetsbetyg:
5.0
VJ
Val J.
"Använda Pinecone för semantisk sökning"
Vad tycker du bäst om med Pinecone?
Pinecone made it easy for my team to significantly accelerate our AI services through vector search. While vector databases have become more commonplace, they continue to introduce new features to stay on the cutting edge and add support new applications. The service is easy to setup and maintain. Theirservice is faster and more stable than some open-source alternatives that we considered.
Vad ogillar du med Pinecone?
While Pinecone can be hosted on both GCP and AWS, it would be great if they also suppoted Azure. We have tested both and had the highest uptime when running PineCone on AWS.
Vilka problem löser Pinecone och hur gynnar det dig?
We use PineCone to accelerate vector search and cachine for nearly all our AI services. It reduces both speed and cost by reducing the need to recompute embeddings,
Small Business (50 eller färre anställda)
November 19, 2023
 Källa
Helhetsbetyg:
5.0
NG
Nikodem G.
"Enkel och pålitlig vektordatabas"
Vad tycker du bäst om med Pinecone?
I really appreciate how Pinecone makes it easy to integrate vector search into applications. Its cloud-native setup and simple API mean I don't have to worry about infrastructure issues. Also, the performance is fantastic, even with massive amounts of data, and the low latency is a huge plus.
Vad ogillar du med Pinecone?
Being relatively new, it lacks some features and integrations compared to more established databases. And, there's a bit of a learning curve to fully leverage its capabilities. Additionally, there are some limitations regarding customization and exportability of vectors outside of Pinecone.
Vilka problem löser Pinecone och hur gynnar det dig?
Semantic Search: Pinecone excels in understanding the context and meaning of queries, which is essential for accurately retrieving relevant information during meetings. Recommendation Systems: Its ability to handle complex data makes it suitable for suggesting relevant topics or actions based on the meeting's context.
Small Business (50 eller färre anställda)
November 17, 2023
 Källa
Helhetsbetyg:
5.0
Aleksey S. avatar
Aleksey S.
Backend teamledare
"Vektordatabas som bara fungerar"
Vad tycker du bäst om med Pinecone?
We did a lot of research on vector databases at Refsee.com and tried many things: embedded db into the docker image served at AWS Lambda (believe me, that's not what you want), Milvus, Pinecone etc. We always had problems and necessity of extra tuning before, both with self-hosted OSS dbs and managed ones, but Pinecone really did the trick! It just works!
Vad ogillar du med Pinecone?
As usual, if you choose managed solution you get a vendor lock. Probably can be costly if you scale and no option for on-prem installation
Vilka problem löser Pinecone och hur gynnar det dig?
We do vector search over our own datasets – basically a "google images" on our own data
Small Business (50 eller färre anställda)
November 16, 2023
 Källa
Helhetsbetyg:
5.0
YC
Yash C.
"Den snabbaste i produktionen VectorDB hittills"
Vad tycker du bäst om med Pinecone?
The speed. Hands down. QPS and the throughput is just the best in the industry. Easiest to get started with. Good support for parallel processing and batching.
Vad ogillar du med Pinecone?
Nothing, just could release more complex document related retrieval systems.
Vilka problem löser Pinecone och hur gynnar det dig?
Semantic search is hands down a new way to search which is extremely efficient. Pinecone does a great job at not only providing the vector DBMS but giving the oppurtunity for scale.
Small Business (50 eller färre anställda)
November 16, 2023
 Källa
Helhetsbetyg:
5.0
JY
Joseph Y.
"Lätt att använda och implementering"
Vad tycker du bäst om med Pinecone?
Quick to signup and implement and use it as daily basis. Performance is stable and very good.
Vad ogillar du med Pinecone?
I don't have anything bad about Pinecone.
Vilka problem löser Pinecone och hur gynnar det dig?
We are building the RAG application.
Small Business (50 eller färre anställda)
November 15, 2023
 Källa
Helhetsbetyg:
5.0
James Kwon L. avatar
James Kwon L.
Grundare
"Användar- och utvecklarvänlig vektordatabas som har hjälpt vårt företag skala"
Vad tycker du bäst om med Pinecone?
Pinecone has helped our company, fevr.io, scale our semantic chat functionality across three key regional markets. The responsiveness and ease of implementation has been a huge plus for our developers. The documentation has been very helpful as well, especially in terms of integrations with products like OpenAI and Langchain. Add to that, the customer support has been tremendously useful.
Vad ogillar du med Pinecone?
While not necessarily a negative feedback, having even more research data on how different dimensions and pods affect various responses would be a helpful resource to have as a reference.
Vilka problem löser Pinecone och hur gynnar det dig?
Storing embeddings of documents is quite costly and difficult to manage. Pinecone solves this with solutions that are easy to implement with OpenAI's API. It allows for rapid prototyping of custom chat models.
Small Business (50 eller färre anställda)
November 15, 2023
 Källa
Helhetsbetyg:
5.0
Jimmie A. avatar
Jimmie A.
Grundare & VD
"Effektiv och användarvänlig, idealisk för nykomlingar av vektordatabas"
Vad tycker du bäst om med Pinecone?
I recently started using Pinecone and was impressed with how user-friendly it is, especially for someone new to vector databases. Its standout feature is its focus on doing one thing exceptionally well. The documentation is clear and easy to follow, making the setup process smooth. Both indexing and query times are impressively fast, which significantly enhances efficiency. I chose Pinecone over other options because it supports larger vector sizes, a key requirement for my needs. Highly recommend Pinecone for its simplicity, speed, and capabilities.
Vad ogillar du med Pinecone?
There are a couple of areas where Pinecone could improve. First, the options for datacenter hosting are limited. For instance, if using AWS, it currently only supports the us-east-1 region, which can be restrictive. Second, the console lacks robust security measures for critical actions. Adding a Multi-Factor Authentication (MFA) verification for deleting indexes and projects would enhance security and prevent accidental data loss.
Vilka problem löser Pinecone och hur gynnar det dig?
Pinecone plays a crucial role in our workflow by efficiently storing vectors from OpenAI Embeddings. This capability allows us to effectively identify and link related content across various features of our platform. The result is a more cohesive and intuitive user experience, as we can seamlessly connect relevant information and offerings. This not only enhances our platform's functionality but also significantly improves user engagement and satisfaction.
Small Business (50 eller färre anställda)
November 15, 2023
 Källa
Helhetsbetyg:
5.0
RD
Rich D.
"Jag kunde inte vara mer nöjd"
Vad tycker du bäst om med Pinecone?
I have a Pinecone index that I've had to double in size three times now to handle the nearly 10 million vectors I have stored. Despite the increase in size, the search speed has remained constant, and upsert speed has actually increased.
Vad ogillar du med Pinecone?
This may not be unique to Pinecone, but you need to make sure you figure out your data schema up front because it requires some work to change records at scale if you want to add or modify metadata.
Vilka problem löser Pinecone och hur gynnar det dig?
Fast speed and fully managed. I don't have to worry about anything other than paying the bill.
Enterprise (> 1000 emp.)
Oktober 26, 2023
 Källa
Helhetsbetyg:
5.0
Rajan G. avatar
Rajan G.
Maskininlärningsingenjör Ii
"Bästa vektor DB"
Vad tycker du bäst om med Pinecone?
- Its retrieval process is good compared to other vector DB - We can visualize it in UI
Vad ogillar du med Pinecone?
It could have been open source which can make it easily usable with high demand.
Vilka problem löser Pinecone och hur gynnar det dig?
Doc search and embedding storage and text retrival
Small Business (50 eller färre anställda)
Augusti 05, 2023
 Källa
Helhetsbetyg:
5.0
Prashanth D. avatar
Prashanth D.
bly Engineer
"Vektordatabas"
Vad tycker du bäst om med Pinecone?
Pinecone used for indexing or searching of duplicate documents or similarity search score with our query. It helps to detect the anamolies easily. Mostly i liked this database to store my data as a vector form.
Vad ogillar du med Pinecone?
Pinecone premium subscription for various indexes and pods control.
Vilka problem löser Pinecone och hur gynnar det dig?
Helps me to easily upsert vectorized data to pinecone vector Db.
Small Business (50 eller färre anställda)
November 20, 2023
 Källa
Helhetsbetyg:
4.5
WJ
Wenbo J.
"Ett av de mest bekväma sätten för dig att bygga en LLM-baserad applikation"
Vad tycker du bäst om med Pinecone?
You can deploy pinecone very fast without caring about the backend things like docker,storage etc. with an account you can directly building your app with the offical API and python code.
Vad ogillar du med Pinecone?
the price is relatively high comparing to some opensourced alternative.
Vilka problem löser Pinecone och hur gynnar det dig?
We are building a LLM-based Application. Pinecone is the essential part of RAG solution.
Small Business (50 eller färre anställda)
November 19, 2023
 Källa
Helhetsbetyg:
4.5
JN
Jiří N.
Gästlektor vid Juridiska fakulteten
"Lätt att använda och kraftfull vektordatabas"
Vad tycker du bäst om med Pinecone?
It is very easy to integrate the Pinecone API with a text generation application using LLM. Semantic search is very fast and allows more complex queries using metadata and namespace. I also like the comprehensive documentation.
Vad ogillar du med Pinecone?
For organizations that need only a little more capacity than is available in a single free pod, the pricing may be more favorable.
Vilka problem löser Pinecone och hur gynnar det dig?
We use Pinecone as a vector database containing almost 150,000 of decisions of the Supreme Court of the Czech Republic and approximately 50 legal statutes. Pinecone serves as the backbone for the knowledge retrieval (RAG) of our legal research application.
Small Business (50 eller färre anställda)
November 16, 2023
 Källa
Helhetsbetyg:
4.5
OB
Oscar B.
"Användarvänlig vektordatabas för företagsklass"
Vad tycker du bäst om med Pinecone?
We started using Pinecone pretty early on. I like the light UI on top of an API-first approach. We have been using it now for millions of daily queries, and it has rarely, if ever, gone down or giving us trouble. Highly recommended!
Vad ogillar du med Pinecone?
Not sure what to say here. It's been a good experience overall. If I had to say something, the pricing was tricky to groc.
Vilka problem löser Pinecone och hur gynnar det dig?
Fast retrieval of multi-modal search queries
Small Business (50 eller färre anställda)
November 16, 2023
 Källa
Helhetsbetyg:
4.5
Cristian V. avatar
Cristian V.
Datavetenskapare
"snabb och enkel att installera vektordatabas"
Vad tycker du bäst om med Pinecone?
The things I mostly like are: - that is easy to set up by following the docs - fast for loading and updating embeddings in the index - easy to scale if needed
Vad ogillar du med Pinecone?
- that is not open source - I cannot query the full list of ids from an index (I needed to build a database and a script to track what products I have inside the index) - customer support by mail takes too much time
Vilka problem löser Pinecone och hur gynnar det dig?
I built a deep learning model for product matching in the ecommerce industry. One of the steps for the system is to find candidates that are potential matches for the searched product. Becase of this, I needed a vector database to store the embeddings (texts and image) for the products for doing a similarity search as a first step of the product matching system.
Mid Market (51-1000 emp.)
November 16, 2023
 Källa
Helhetsbetyg:
4.0
AS
Archontellis Rafail S.
"GWI på tallkotte"
Vad tycker du bäst om med Pinecone?
Easy of use and metadata filtering. Pinecone is one of the few products out there that is performant with a query that contains metadata filtering.
Vad ogillar du med Pinecone?
The pricing doesn't scale well for companies with millions of vectors, especially for p indexes. We experimented with pgvector to move our vectors in a postgres but the metadata filtering performance was not acceptable with the current indexes it supports.
Vilka problem löser Pinecone och hur gynnar det dig?
Semantic search for now.